What does Quantum Safety mean, how do we get there, and what does this have to do with Bitcoin?
The Threat that Quantum Computers pose to Cryptography is the “killer app” for Quantum Computing. This topic strangely receives both a lot of attention on one hand, but not enough on the other hand. It receives a lot of attention because big improvements are being made both to the Quantum Computing Hardware, but also to the algorithms threatening our Cryptography fundamentals, and that attracts attention. However it doesn’t receive enough attention in actually addressing this challenge, because sometimes fixing the problem is not as easy as it sounds (and finding a technical solution is the easy part).
There is however no argument that Quantum Computing is on its way and the pace of innovation is staggering (just in the last days, Xanadu raised $32m to build a new photonics based quantum computer and British quantum computing experts moved their HQ to Silicon Valley to raise money to support their mission to (quote) “… develop a large-scale … quantum-computer … based on photons as qubits, with 1 million qubits as its first go-to-market product in five years”)
So, the consensus now, is that Quantum Computers will be a reality, and the debate has moved to the question of when it will occur. Will it be within 5 years as PsiQ believes? Or do we believe the more pessimistic view that it is 15 years out? I’m not going to argue one way or the other, but let’s agree that there is no disagreement that it will happen.
Having said that, let’s now focus on what is needed to bring our current infrastructure to a quantum-safe place. What do we need to do to make our world operate in a safe and coordinated way in the future. We all want to leave this place in a better state than we found it in, so let’s look at what is needed to make this happen.
What do we need to upgrade to become quantum-safe?
Well, it looks like that we literally need to upgrade everything. We basically use cryptography everywhere and we encrypt everything, so there are lots of things we need to look at. A few examples:
And these are just some examples, the list is much, much longer.
So, let’s fix it!
If only it were just that easy to do.
To upgrade the fundament of cryptography is like open heart surgery. There is no easy drop-in replacement of Algorithm A for Algorithm B. It is unfortunately quite complicated as every mistake could be fatal. There are three big categories we need to consider
Technical Work
Having always been a techie, I used to believe that once we found a technical solution to a problem, we are kind of “done” (in the sense that we have achieved the hard part and the rest just follows). Unfortunately, I learned over and over again that this isn’t quite true.
The main work that needs to be done here is a thorough review of all the cryptographic functions used in an organization to assess whether they need to be changed at all, when they need to be changed or how they even can be changed.
In 2015, the NSA kicked things off when it announced that it wants to move to new quantum-resistant algorithms and this triggered a whole range of initiatives – including NIST’s Post-Quantum-Cryptography working group, which was setup in 2016 and has been working since then to identify algorithms that can be considered safe from the Threat of Quantum Computing. The list is expected to be finalized in 2022-2023.
This activity underlines a critical fact: we don’t even know today what quantum-safe algorithms we should be using… Although analysis has shown that we “only” need these new algorithms for public-key-cryptography (like RSA or ECC for encryption and digital signatures) and not for symmetric algorithms (like AES encryption) or hashing (like SHA2/SHA3). “Only” is in quotes as PKI is very widespread, used for example in nearly all key exchanges, and is hence an integral part of all our security, affecting maybe 95% of cases.
Outcomes of this workstream may be something like the following:
Operational work
Let’s assume we have assessed what we need to do from a technical point of view. Let’s look at the operational aspect of this outcome. I alluded to this a little bit already, but this may include things like
Social/Economic work
So, let’s assume we have worked out all the technical bits and pieces and we have sorted out the operational challenges. What about the implication of this from a larger social and economic point of view? Are there cases where this change would fundamentally alter the use of my system. Could it even be that this change fundamentally threatens my business model?
What about the $10bn USD in Bitcoins that includes Satoshi’s bitcoins? Remember, these Bitcoins have their public keys exposed and a Quantum Computer can derive the private key to it, which will give them full access to them. What impact will it have on the Bitcoin ecosystem when somebody moves these coins? Some Bitcoin purists see it as a “social contract” from the “founders” that these coins will never be spent. Nobody really knows whether Satoshi has even the private keys for them, or whether he threw them away. If these coins end up being spent, how can we know whether it was Satoshi or a rogue Nation State that happily invested $5bn into a Quantum Computer because they’ll get immediately $10bn back? We don’t even know who Satoshi is, so nobody can ask him/her anyways.
And if we have decided in the Operational section that all Bitcoins need to be moved to a Quantum-Safe-Address, how long do we give users to do so? 1 year, 2 years, 5 years, forever? Do we say: You can move it until we believe a Quantum-Computer is viable and then we lock it down? Who decides that? How is this being communicated to the account holders – considering nobody knows how these account holders are? What impact does this have on Bitcoins that are time-locked for many years? Could a smart attacker simply wait until the time-lock expires and then steal them a few seconds before the “real” holder? How can the Bitcoin network even distinguish between the “real holder” and an attacker? Is my crypto-currency obsolete because all the money will be gone? Is my crypto-currency obsolete because smart people moved to another quantum-safe crypto-currency?
All these questions are part of ‘Crypto-Agility’
For those readers that are still with me here, thank you for reading this far 🙂
Everything I described here in this article falls under a phrase that is well known – yet unfortunately not well defined. This article was my attempt to define it in a bit more detail. Everything here is known as “Crypto-Agility”
Crypto-Agility is not just replacing one algorithm with another. It certainly includes that too, but it is much, much more. In virtually all cases where someone says “Well, let’s not worry about this, because we have plenty of time”, they are only looking at one part of the equation (e.g. the technical part) and not about the rest. Crypto agility needs to look at the full picture of technical, operational and socio-economic impacts as described above.
Back to Bitcoin
I’ll close by revisiting the topic of Bitcoin, which is a really interesting use-case and illustration of the broad range of impacts that the quantum threat poses, and of the need for a cohesive, crypt-agile strategy to address them. Bitcoin has established itself as an economic force, but will be sorely challenged by this fundamental threat of quantum computers. There have been some discussions here and there about this topic that range from “there is nothing to do here…”, “Once Quantum-Computers are powerful enough, we simply move to Algorithm XXX“, or “We have lots of time to figure this out“, or “Let’s do it like this… 140 characters of plan… and if somebody doesn’t move their coins, bad luck…“
Clearly none of these strategies are comprehensive or thoughtful enough to really work by themselves. And while I agree that there is time to address this issue, I fundamentally believe that we need to have a Quantum-Safe Manifesto for Bitcoin that clearly outlines the road-map of how this will play out. That includes non-technical items such as how this is communicated, but also commitments to not include new code that hasn’t been reviewed for its quantum-safety and the impact it may have.
There needs to be a consensus between all major players in the Bitcoin ecosystem (such as core developers, miners, wallet providers, users) how this should play out. And that s a challenge, because even just agreeing to a consensus can take years. This work needs to start ASAP as there are “improvements” on the table (such as Schnorr Signature and Taproot), that may or may not be such great improvements in the long run.
For those of us not involved in Bitcoin, now is not the time to relax. The types of issues listed above will challenge many industries, so its time to roll up our sleeves and not just look for technical solutions, but really ask the challenging questions to understand the full potential consequences of this threat, how to deploy operational solutions and limit negative socio-economic impacts.
Andreas Baumhof, Vice President of Quantum Technologies